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J.  Phys. A: Math. Gen. 13 (1980) L285-L288. Printed in Great Britain 

LETTER TO THE EDITOR 

The kink: real Hopf bundle and Morse theory 

Luis J Boya and Juan Mateos 
Departamento de Fisica Tebrica, Universidad, Salamanca, Spain 

Received 2 June 1980 

Abstract. We study the (44)2 theory with negative mass term and consider small variations 
to extremals (Morse theory), identifying the Jacobi fields (zero modes). The associated 
topological information is recovered, interpreting the vacuum and the kink as sections in the 
trivial and Hopf real line bundles respectively; we consider also duality, PS limit, spinor 
character and statistics. We conclude with the relevance of the two other Hopf line bundles 
(complex and quaternionic) for vortices and instantons, respectively. 

In the (44)2 theory with the ‘wrong’ mass term, the static solutions extremise the 
functional 

with c’ = @ ’ / A  and p the ‘wrong’ mass; the bounded solutions of SA184 = 0 are 

F F 
4 k i n k  = f- tanh - (X -Xo), JA J2 4 = * c ,  4 =o ,  

4 = M  sn(k, x -xo); (2’ )  
4 = f c  is the doubly degenerate vacuum, q5 = 0 is unstable, the third equation is the 
kink solution (Rajaraman 1975) centred at xo, and (2’) is a real sine-amplitude elliptic 
solution, periodic in x space, with k and x o  integration constants; for k = 1 we recover 
the kink. There are other, elliptic, solutions, in which 4 does not remain bounded as 
x + f CO; of course, the whole problem is equivalent to the motion x(t) of a particle with 
m = 1 in the one-dimensional potential V(x) = -:A (x’ - c’)’. 

The stability of these extrema are tested by the spectrum of the Hessian operator; 
according to Morse theory (Milnor 1963), this gives information on the topology of the 
manifold of solutions ; if 6 = 4 - 40, with 40 the solution of ( l ) ,  

(3) - d26/dX2 - V”[~O(X)]C~T = - w 2 6  
is the Hessian eigenvalue equation; the solutions (Rajaraman 1975) are 

4 = f c  is a minimum, 4 = 0 is a maximum, 

4kink is a minimum with two Jacobi (zero) modes. 
(4) 

One zero mode of the kink is 6 = 4, i.e. the translation mode (going from kink centred 
at xo to kink centred elsewhere); the other zero mode leads to elliptic solution (2‘) (in 
fact, the kink is a limiting sine-amplitude function). Similarly, one expects the sn(k, x)  
wavefunction to have the translational mode and a k-changing mode as zero modes. 
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With these facts about the topology of the (44)2 theory we turn now to a more direct 
topological interpretation of the solutions. 

The fibre bundle interpretation of the kink is straightforward; as base space we take 
R = {x} 'completed' at infinity, i.e. R U (00) = S' ;  the structure group is the internal 
symmetry of ( l ) ,  namely 22(4 + - 4 ) .  As IIo(Z2) = Z2 there are just the trivial bundle 
P 0 = S ' x Z 2  and another, non-trivial bundle (G-bundles over the sphere S" are 
classified by IIn-1(G), see Steenrod 1951). This bundle is very well known: it is the 
Hopf first bundle So = Zz+ S' + S' = RP' ,  with the antipodal action of Z2  on S'.  

We take the natural representation Z Z - R  to form the associated real line bundle 

E is just the (infinite) Mobius band, and tu is the basic bundle for real vector bundles 
(based on the orthogonal groups, see Milnor (1974)). 

Incidentally, the solitons of a broken-symmetry theory are classified by TTd-2 (G/H), 
with d the total space-time dimension, G the symmetry group and H the stabiliser of the 
vacuum (see Boya et a1 1978); here again, we have II2-2(Z2/e) = Z Z ,  i.e. the classes of 
bundles coincide with the classes of 'kinks':  the vacuum class corresponds to the trivial 
bundle Po, and we associate the kink with the Hopf bundle a. 

In r(&), the space of cross sections of tu, we take an arbitrary element 4 ; because tu 
is 'twisted', we need at least two charts in the circle S' to describe q5 as an ordinary 
function; if the second chart is 'at infinity', we just get the condition 4(+00) (i.e. 4 in 
0 = T in one chart) = +(-a) (i.e., q5 in 8 = -T in the other), because q5 + -4  in the 
overlap. This is of course what the kink function does: the kink solution is just a smooth 
cross section in the vector bundle of the first Hopf sphere bundle (also called the real Hopf 
line bundle). 

As there is no other non-trivial bundle, there is no other kink, and therefore there is 
no antikink, which is of course well known: the Z Z  symmetry makes us work modulo 
two. The vacuum sector can of course be realised as a section in Po. 

One can even suggest two 'natural' sections in which will reproduce two 
important limiting cases of the kink of (2) .  

(i) Describe the base S' by an angle 8, and take 4 ( 8 )  = c0/.rr; viewing it back in R, we 
reproduce a 'Prasad-Sommerfield' limit (PS) of the kink, namely A + 0, p + 0 but 
p / h  = c fixed. 

(ii) Now take 4(0 = 0) = c and 'translate' this vector parallel to the base curve (lift of 
dldx vector field by the unique flat connection): the graph of the section would look like 
an €(sign)-function, with a jKmp of 2c at 0 = 0: this is the 'string limit' (strong limit) of 
the kink A +CO,  p += 00, p/v'\lh = c constant: 

lo) i 61 I C )  

Figure 1. ( a )  General kink; ( b )  PS limit; (c) string limit. 



Letter to the Editor L287 

The transition (c) + ( b )  + ( a )  can be seen as the lift of a conformal transformation 

As a further study of (1) let us write it in the form 
with generator (1 -x2) d/dx, see Mateos (1980). 

2 N 4 1  = 1P1l2 + /lB112 (6) 
with D = d+/dx, B = (A/2)l” ( 4 ’ - c 2 )  and 11 11 an L2 norm. One sees at once that 
D = 0, B = 0 gives the absolute minimum, namely 4 = f c ;  in order to identify the kink 
in this way (Mateos 1980) we write again 

(7) 

and, as llD f B1/ 5 0, we have the inequality 11D112 + llB112 2 IDBI; this bound is saturated 
for A * B  = 0 or 

2 4 4 1  = 1 1 ~ 1 1 2 + 1 1 ~ 1 1 2  = llD fB1I2r IDBI 

dc$/dx = *(A/2)’” ( 4 ’ - c 2 )  (8) 

with general solution 4 k i n k  = f(p/dA) tanh [p(x -xo)/d2], i.e. the kink. The kink 
solution saturates the (Bogomolny) bound (see Bogomolny 1976). Of course, (8) is a 
first-order equation, with just an integration constant; the associated Jacobi equation is 

d&b/dx = r (A/2 )”24~84  (9) 
which is satisfied by the function &)kink = 84: the translational mode is now the unique 
zero mode. 

For any scalar field in 1 + 1, ~,,,d,q5 = j ,  is automatically conserved, and hence the 
associated charge, 4 (+CO) - 4 (-CO), is called the topological charge. Here, however, it 
is not quantised, but is just 2c. What is an integer here, characterising the bundle, is the 
first Stiefel-Whitney class w1 of the bundle (by definition 1 in the Hirzebruch approach, 
see Milnor (1974)). Here we can recover it by a ‘PoincarC-Hopf theorem’: for 4 E I?(&) 

c W ( P i )  = w1(5a) = 1 (1 is mod 2) (10) 
p, zera 

where pi are the (isolated) zeros of section 4, and w ( p i )  = 0 or 1 (mod 2) according to 
whether the graph of 4 close to p t  does not or does cross 4 = 0; e.g. for the kink of (3), 
there is just a zero, at x = 0, of windungzahl w = 1. Physically this says that, with 
solitons, the Higgs fields have zeros. 

We observe that the dimension of the null space of normalisable Jacobi modes is 0 
for the vacuum (and one for the kink): the SW class of vacuum is obviously wl(Po) = e, 
and as the kink bundle is a sort of square root of the vacuum bundle (see below), we 
recover the characteristic number by the kernel of an operator: a sort of Atiyah-Singer 
theorem in odd dimensions. 

Perhaps a less known feature of the kink is its spinor character. This can be seen as 
follows: the ‘square’ of the Hopf a-bundle is just the (trivial) tangent bundle of the circle 
( w l  class = 1 + 1 mod 2 = 0). Now the ‘square root’ of this tangent bundle is the spinor 
bundle of the circle: in general 

z2 

.1 
Pin( n ) 

.1 
O(n)+T(‘V)+ “Ir 

lifts to Pin(n) + i (‘V) + “Ir 

iff WAY) = 0; here Pin(n) is the anti-image of the orthogonal groups in the Clifford 
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algebra (Bourbaki 1960) and ~ ( 7 ' )  is the bundle of orthogonal frames to a Riemann 
manifold w". In our case w"= S' ,  O ( n )  = 0(1) = Zz, Pin(1) = Z4 and wz(S ' )  = 0. So we 
have Pin( 1) = Z4 + i(S') + S1, which reduces to 

Spin(1) = ZZ + S1 + S' = RP' 
because 0 + SO wherever the manifold is orientable. The written bundle is isomorphic 
to the Hopf a- bundle: the kink, as section in a spinor bundle, has the character of a spinor 
field. 

This spinor interpretation of the kink reinforces the considerations of Finkelstein 
(Finkelstein and Rubinstein 1968): he proved long ago the antisymmetry under 
exchange of the two-kink wavefunction: as we have shown here the spinorial character 
of the kink field, we have an example of topological proof of the spin-statistics 
theorem in 1 + 1 dimensions (in this case the antisymmetry is obvious in the two-kink 
configuration). 

We have done this extensive study of the kink as the simplest soliton; we anticipate 
that the vortex of Nielsen-Olesen (1973) realises a section in the second Hopf bundle 
(or complex line bundle), and most of the aspects described here persist, with obvious 
modifications, with some new features emerging (e.g. a complex structure). The same 
bundle is connected with the magnetic monopole (see e.g. Ryder (1980) or Boya, 
unpublished). We shall publish our results for the vortex elsewhere. 

Finally, the third Hopf sphere bundle is realised in the instanton, as should be clear 
from the analysis of Atiyah (Atiyah et a1 1977). We therefore have the scheme 

= so(2) zz = O(1) = so+ s'+ s1 = RP1 kink 
/ I  

vortex or monopole SO(2) = U(1) = s'+ s3+ s2 = CP' 
II 

SU(2) = Sp(1) = s3 + s7 + s4 = HP1 instanton 
I /  
s7+s15+s8=gp1 not a group; unit octonions = 

Is there any physics related to the fourth, octonionic line Hopf sphere bundle? 
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